
R Manual for QCA
Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).
https://doi.org/10.7910/DVN/KYF7VJ

Version 3.0 (October 2023)

.

The book is available at: http://press.georgetown.edu/book/qualitative-comparative-analysis
.

Contents

1 Introduction 2

2 Installing R and RStudio 3

Online Material 3

Getting to Know R and RStudio 4

Working Directory 6

Reading Data 7

Installing Packages 8

Citing Packages 8

3 Data Management 9

Pre-Existing Data Sets 9

Creating New Data Sets 10

Modifying Data Sets 11

Saving Data Sets 12

4 Descriptive Statistics 12

5 Set-Theoretic Analysis 16

Set Operations 16

Venn Diagrams 17

Creating Raw Data 18

Calibrating Sets 19

Necessary Conditions 21

Truth Tables 22

Minimizing the Truth Table 22

6 Visualizing Results 27

7 References 33

https://doi.org/10.7910/DVN/KYF7VJ
http://press.georgetown.edu/book/qualitative-comparative-analysis

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 2

1 Introduction

 The great (or perhaps infuriating) thing about R is that there’s always more to learn.

Robert I. Kabacoff 1

This R Manual for QCA complements Qualitative Comparative Analysis: An Introduction to

Research Design and Application (Mello 2021). The focus is on functions to prepare and
analyze data and to conduct set-theoretic analyses. For this, we use the R software environment
(R Core Team 2020), the RStudio text editor (2020), and we work primarily with the R
packages QCA (Duşa 2019), SetMethods (Oana & Schneider 2018), and ggplot2 (Wickham
2016). The R Manual is complemented by an R Script that contains the code used in this
document (see below for download instructions).

As indicated in the above quote by Robert Kabacoff, one is hardly ever done learning R. Yet,
for new users, the main hurdle is starting with R in the first place. With this in mind, this R
Manual aims to get you started towards conducting your own QCA study and to reproduce the
analytical steps introduced in the book. Unlike texts that assume prior knowledge of R, the
Manual also devotes space to basic questions of working with the R editor, getting the data into
shape, and many of the issues that can arise during the analysis.

As for QCA functions, this manual covers one complete QCA research cycle as presented in
the book (Mello 2021, 6), including the calibration of different kinds of raw data, the analysis
of necessary conditions, the creation of truth tables, their minimization to derive solution terms,
and ways to customize the analysis, concluding with the visualization of QCA results. That
said, this R Manual does not aim to replace a comprehensive introduction to R and its
functionality. Nor can we cover all the potential ways of working with the QCA packages.
Hence, I recommend consulting at least one general introduction to R and data management.
There are plenty of textbooks available and some are tailored towards usage in specific fields
(e.g. Field et al.; Elff 2021; 2012; Gaubatz 2015; Imai 2017; Kabacoff 2015; Pollock &
Edwards 2018). For questions about further analytical functions and alternative settings, readers
are advised to consult the comprehensive book-length treatment of the QCA package by Adrian
Duşa (2019), and the guide to QCA using R by Nena Oana, Carsten Schneider, and Eva
Thomann (Oana et al. 2021), which provides further advice, particularly on functions of the
SetMethods package (Oana & Schneider 2018).

1 Kabacoff (2015, 532).

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 3

Another way of getting started with R is by using one of the many freely available online
resources, as for example the swirl package.2 There are also various online discussion forums,
where you can find answers to all kinds of R questions, also on the QCA-related packages.3
When errors occur, it is often a good idea to start looking for solutions by copying the error
message into a search engine. Most often, others experienced similar problems and there may
be an easy fix for the issue, especially when it is about common tasks like installing R and its
packages, reading data, or working with data frames.

2 Installing R and RStudio

Before we can start working, we first need to install R and RStudio. R is the software
environment and RStudio is an editor that enhances the use of R with a graphical interface and
many integrated functions. We begin by installing R and only then install RStudio (typically,
an open-source license for RStudio suffices), because the latter runs on the former. The latest
versions of the software can be accessed at the following websites, which also contain platform-
based instructions (depending on whether you use Windows, Mac OS X, or Linux):

R: https://cran.r-project.org/
RStudio: www.rstudio.com/products/rstudio/

One thing to keep in mind is that there are frequent updates for R and RStudio, and for many
of the R packages. This means that you should regularly check for updates, especially when
you have not used the software in a while. Occasionally, this may lead to interruptions in your
workflow, as when functions are discontinued or renamed, or when default settings in a package
have been changed. In most cases, however, updating should work seamlessly and backward
compatibility should be ensured, so that older functions should still be operable.

Online Material

Complementary online material can be found on my website https://patrickmello.com under
the drop-down menu PUBLICATIONS and QUALITATIVE COMPARATIVE ANALYSIS: RESEARCH DESIGN
AND APPLICATION. The files include an R Script (RManualforQCA.R) and data sets that are used
throughout the following sections. This material is also available on Harvard Dataverse:
https://doi.org/10.7910/DVN/KYF7VJ.

2 This can be reached at: https://swirlstats.com/.
3 A general forum is: https://stackoverflow.com/.

There are also QCA discussion groups on Google (https://groups.google.com/g/qcawithr) and
Facebook (https://www.facebook.com/groups/483487988377003/).

https://cran.r-project.org/
http://www.rstudio.com/products/rstudio/
https://patrickmello.com/
https://doi.org/10.7910/DVN/KYF7VJ
https://swirlstats.com/
https://stackoverflow.com/
https://groups.google.com/g/qcawithr
https://www.facebook.com/groups/483487988377003/

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 4

Getting to Know R and RStudio

Once we have installed R and RStudio, we can start a new session by opening RStudio. It is
not necessary to open R, because RStudio runs on the R installation. For all future steps we will
always work from within RStudio.

When we open RStudio, we see four windows, similar to what is shown in Illustration 1. The
top left window shows our R SCRIPT (to see a script, open the file RManualforQCA.R).
Eventually, the script area should include our entire QCA analysis. The window on the lower
left shows the CONSOLE. This area shows the output that R produces, based on the commands
we enter. Whenever we ask R to compute something, the results will appear in the CONSOLE
window. These are printed in black, while blue font repeats the commands given in the script.

In the top right corner, we can see several tabs, including ENVIRONMENT. This area shows, among
others, objects we created and data sets we read into R. Finally, in the lower right corner there
is another window with several tabs including HELP. Here we can find documentation on R
functions. There are many more functions, but the ones mentioned should do – to get us started.

Illustration 1: Layout of RStudio

You can reproduce the example in Illustration 1 by creating a new script (select NEW FILE and
then R SCRIPT from the drop-down menu FILE) and writing the commands as shown. Note that
the first two lines are commentary. This is always preceded by a hash sign (#). Anything you
write in the same line after a hash is not treated as code and will not be processed by R. RStudio
highlights this by assigning a different color to commentary, so it can be distinguished from
code (the standard color is green, but like many other things in RStudio, this can be
customized under PREFERENCES).

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 5

Commentary is part of good coding practice. Writing short comments before or after a function
helps us remember what a certain part of the R code was meant to achieve and why we chose
certain values. This may become important when you revisit your own code weeks or months
after you wrote it and try to understand why a particular command was needed. It also makes
your code transparent and reproducible to others. Many academic journals now require the
submission of R code, together with data used for the empirical analysis. Hence, we can spare
ourselves some extra work by writing transparent and well-documented code in the first place,
so that the code does not have to be rewritten or heavily edited once a manuscript is accepted.
It is also considered good practice to use white space between arguments and to break up longer
lines of code into multiple lines, so that it is easier to inspect the code. This can be done
manually or by asking RStudio to do this for us: simply select the respective segment of code
and then select the function REFORMAT CODE from the CODE rider in the menu.

The next few lines in Illustration 1 include small examples of R code. For instance, you can use
R to do mathematical calculations, the result of which will be shown in the console. Here, we
write 2 + 2 and then RUN this code to get the result.

Running code can be done in two ways. You can either select a part of the code and manually
click on the RUN button at the top of the script window. Or you can select the code and then
simultaneously press CONTROL + ENTER (Windows) or COMMAND + ENTER (macOS) on your
keyboard. The latter will usually be the faster approach. Note that when the cursor is placed in
a line, then the entire line of script will be run (including additional lines if the code segment
runs over several lines). If you want to run more code, then you need to select a larger part of
the script. Conveniently, you can also select and run an entire R script.

For the remainder of this chapter and unless stated otherwise, text with GRAY BACKGROUND is
meant to be written in the upper left script window of RStudio (you also find the entire script
in the RManualforQCA.R file). From RStudio, you can run the code and manipulate it to
practice the different functions and arguments along the way.

The R language is based on objects. We create objects by using a leftward arrow sign. Once an
object is created, it appears in the ENVIRONMENT shown in the top right window. For example,
we can create the object A, which shall equal 2 + 2:

A <- 2 + 2

We can also assign names to objects, by placing the characters in quotation marks:

City <- "Amsterdam"

Note that R is case-sensitive, so City and city are treated as different objects (calling the
second object will return an error because we have not created it). In any event, you can always

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 6

list everything in your environment with the ls function. This is followed by empty brackets, to
produce the default function of ls, without any parameters or arguments:

ls()

This yields the following output in the console:

[1] "A" "City"

Note that the number in brackets [1], shown in the output given in the console, is an index
number. In this example, there are only two objects. But once we have more objects, the results
may run over several lines, each of which would be preceded by an index number, so that
separate objects can be clearly identified by their index number.

Working Directory

When starting to work with R, we specify a working directory from which R reads data and
scripts, and where it will save any output we generate. To do this, we first check what the current
working directory is, using the function getwd:

getwd()

This should return a pathname on your computer, ideally with all relevant files in it. We can
check the folder content in our working directory with the function list.files:

list.files()

To change the working directory, we use the function setwd:

setwd("/mydirectory/mydata") # Adapt this to match your own pathname

Note that R does not recognize subfolders, so all relevant files you want to work with in a
single R session have to be in the same folder. Hence, it is a good idea to create a dedicated R
project folder and place all data files and scripts there before working with R. Errors often come
from the folder structure or from misspelled file names. In both cases, R will not find the right
data file, and hence cannot read the data to begin with.

Should you run into trouble when setting your working directory, note that you can also do this
manually in click-and-point fashion in RStudio. Simply navigate to the lower right window
and the rider FILES (depending on your operating system, this may also be in another window).
In the files view, you can steer to the desired folder, then select MORE and SET AS WORKING
DIRECTORY. Use the getwd function from above to confirm your settings.

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 7

Reading Data

To work with R, we need to import our data first. R can read various file formats, but for QCA,
the most common format are comma-separated files (.csv). Here, we use the function read.csv
to read the file FuzzyData.csv (part of the online material referred to above) and create a new
data frame that we choose to call fuzzy.data (we could assign any other name). The data then
appears in our ENVIRONMENT in the upper right corner of RStudio.

fuzzy.data <- read.csv("FuzzyData.csv")

However, when we examine the new fuzzy.data object by running its name (or by clicking
on it in the environment), we can see that the code from the previous line has not read the data
correctly. All the information has been read as a single column because the column separator
has not been recognized. We can solve this problem by telling R that our data is separated by
semi-colons rather than commas, using the sep argument:

semi.colon.data <- read.csv("FuzzyData.csv", sep = ";")

The result looks better, but we can see that the name column for our cases has been treated as
a variable column. To change this, we specify which column includes case names, using the
row.names argument. Most often, this will be the first row in our data frame. We modify our
script once more and now we should have data with 26 cases and 4 conditions in our
environment (C1, C2, C3, and OUT), while the column with row names is shaded in gray,
which indicates that it is not treated as a variable:

fuzzy.data <- read.csv("FuzzyData.csv", sep = ";", row.names = 1)

Note that another potential source of error may be the incorrect treatment of decimals.
Depending on computer language settings, decimals can be indicated by a comma or a period.
This may cause an incorrect reading of the data. If such an error appears, we can solve this with
the dec argument (I mention this for illustrative purposes only – our data would wrongly be
read as a single column with the following code):

dec.comma.data <- read.csv("FuzzyData.csv", dec = ",")

The arguments sep and dec are not always needed (often the standard settings correctly read
the data frame). However, in case you encounter errors in reading your data, the first thing to
check are these two arguments, together with row.names to separate case labels from data.

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 8

Installing Packages

R comes with a multitude of different functions. Yet, one of the great advantages of R is the
existence of user-defined packages that include functions and code for specific purposes. Rather
than writing a long patch of code each time we seek to conduct a sequence of analytical steps,
a function from a specific package may do just that with a single command.

To work with packages, we first need to install them on our local computer system. For our
purposes, we mainly work with the packages QCA (Duşa 2019), SetMethods (Oana &
Schneider 2018), and ggplot2 (Wickham 2016). We install the three together, using
install.packages and the following syntax (we could also run separate commands for each
package):

install.packages("QCA", "SetMethods", "ggplot2")

Occasionally, install.packages yields an error message stating that the package is “not writable”
on the system library (because your account may not have write permissions on the computer)
and asking whether you would like to use a “personal library” instead. In that case, you can type
“yes” to proceed and install the package. You can also solve the issue by changing the
permissions settings on your computer or by using a different file directory.

While packages only need to be installed once, they must be loaded at the start of each session,
using the library function. To load all three packages, we use the following:

library("QCA", "SetMethods", "ggplot2")

Note that you can always check which packages are installed and loaded in point-and-click
fashion, by navigating the cursor to the rider PACKAGES in the lower right window. There you
find INSTALL and UPDATE buttons, which may be more convenient than running code to achieve
the same aims.

For summary information on your R environment, run sessionInfo. This gives you info on your
R version, platform and operating system, general settings, and attached packages and their
version numbers:

sessionInfo()

Citing Packages

Note that R and R packages, like other publications, should be cited when used in your own
work. To retrieve the full reference, use citation with empty brackets (on how to cite the R
version), and together with the package name to cite specific packages:

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 9

citation()
citation("QCA")
citation("SetMethods")
citation("ggplot2")

For the first line, this yields the following information:

To cite R in publications use:
R Core Team (2023). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

3 Data Management

Pre-Existing Data Sets

Some packages already contain data sets that may be useful for exercises. For example, let us
take a look at the data entailed in SetMethods (Oana & Schneider 2018):

data(package="SetMethods")

This yields a list of data sets, which we can load with the data function. To explore, we load
the data from a QCA study by Barbara Vis (2009). The data will appear in our environment:

data(VISF)

To examine this data set, we can either click on the object in the environment (this will open a
new rider) or simply type its name, which will yield the entire data set, printed in the console.
But this may not be convenient for large data sets. To simply inspect the structure and see
whether the data was read correctly into R, we use the head function, which yields the first six
lines from the data set, as shown below the command head(VISF). We see that the data set
contains government cabinets as cases, and four fuzzy-set conditions (u is the outcome):

head(VISF)

 p s r u
Lubbers1 0.33 0.83 1.0 0.83
Lubbers2 0.17 0.33 1.0 0.33

Lubbers3 0.33 0.67 0.6 0.67
Kok1 0.17 0.40 0.4 0.67
Kok2 0.33 0.33 0.4 0.17

Balkenende2 0.67 0.67 1.0 0.83

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 10

Creating New Data Sets

We can also create new data sets with R. For a simple data set, we start by creating several
vectors. These are one-dimensional arrays with numeric, character, or logical data. For a start,
we only need numerical data, which shall represent raw data values for our cases. We use the
combine function c() to create vectors with three values, separated by commas. We create the
vectors a, b, and c and assign values to each (with decimals for vectors b and c):

a <- c(1, 3, 17)
b <- c(24.1, 18.0, 10.3)
c <- c(6.34, 3.78, 0.61)

Vectors represent columns in our QCA data frame (cases’ values for a specific condition). The
vectors can be tied together with the data.frame function:

our.data <- data.frame(a, b, c)

To work with the data, we should first assign row names, because the rows represent our cases:

row.names(our.data) <- c("Shanghai", "Karachi", "Seoul")

We can also assign new column names (instead of the generic a, b, and c) by creating a new
character vector and placing it inside our data frame. These are the conditions that we use in
QCA (including the outcome condition):

columns <- c("rank", "population", "size")
colnames(our.data) <- columns

Let’s examine our new data set by typing our.data in the console:

our.data
 rank population size
Shanghai 1 24.1 6.34
Karachi 3 18.0 3.78
Seoul 17 10.3 0.61

We can see that we have created three cases (Shanghai, Karachi, and Seoul) and three
corresponding conditions (rank, population, and size). This could be the starting point for a
larger data set to be used with QCA. We would still need to calibrate this data, since it is not
yet in crisp or fuzzy-set format. To be sure, most QCA studies rather import their data from
Excel and the like, instead of creating it from scratch within R. But with the code above, you
know how to create a data frame in case that is needed. Next, let’s see how data can be modified.

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 11

Modifying Data Sets

Elements in a data frame can be modified. This may be needed, for instance, when we decide
to drop a case or condition, or when we want to assign a new value to a case. Modifying
column names can be done with the function colnames and a number that specifies the column
we want to change. This number is placed in square brackets. For example, we can apply
colnames to our.data and change the name of column two by assigning a new name to it.
Note that this will overwrite any existing name for the respective column:

colnames(our.data)[2] <- "new name"

On other occasions, you may want to add a case, which can be done by attaching a vector to
the existing data frame as an additional row, using the nrow argument and specifying its values
after the list argument (here we choose the values 27, 8.7, and 1.57):

our.data[nrow(our.data) + 1,] = list(27, 8.7, 1.57)

We assign a name to the new case using the row.names function and specifying the data set
(our.data), the row number (in square brackets), and by inserting the name of the new case:

row.names(our.data)[4] <- "London"

Sometimes we may want to assign new values to specific cells in the data frame. For example,
we can attribute a value of 11.2 to the cell in row 4 and column 2, which is London’s value in
the condition represented by the second column (the one we relabeled to new name). To do
this, we specify the data frame (our.data) and use square brackets to indicate the value we
want to change. Inside the square brackets, the first number refers to the rows and the second
number refers to columns. These are always separated by a comma. We specify the target cell
in this way and assign a new value of 11.2 to it:

our.data[4,2] <- 11.2

Finally, we can delete rows and columns. To effectively delete a row we can create a subset of
our data (placing the result in a new data frame), by using a minus sign inside square brackets
and the number of the row to be deleted in regular brackets. Note that in the following code,
square brackets are used without a number after the comma. This means that all columns are
selected. Hence, this creates a new data frame without row 2 and the values for all the columns
across it:

new.data <- our.data[-2,]

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 12

Deleting a column from a data frame can be done in the same manner, for instance to create a
subset that excludes columns 2 to 3 (or any other range of columns). For this to work, we need
to place the column range in regular brackets, inside the square brackets:

new.data <- our.data[,-(2:3)]

Another way to delete a column is by stating its number in square brackets and assigning a
value of NULL to it. For example, to delete the second column and all respective rows from
our.data we can use the following code:

new.data[,2] <- NULL

These examples help address some basic questions that arise when working with QCA data
frames. That said, with R there are always multiple ways how to solve an issue and there may
be more economical ways to achieve the same aims in your R script, especially when manifold
operations are required on larger numbers of cases. Such options are explored in greater detail,
for instance, in Field, Miles & Field (2012), Kabacoff (2015), and Elff (2021).R

Saving Data Sets

The old adage save early, save often also holds true for R. Upon closing RStudio we are
prompted to save changes we made to an R script and we can also save our workspace to
continue at the same place where we left off. Apart from these, we should regularly save our
data to keep progress we made. This is straight-forward, as we simply need to specify the object
we want to save and assign it a name of our choosing. Here, we decide to save the data frame
we created earlier (our.data) as a new comma-separated file mydata.csv, using the write.csv
function. When we run the following line, the new file will appear in the working directory of
our computer (we can check this with the list.files function, introduced above):

write.csv(our.data, "mydata.csv")

4 Descriptive Statistics

Before engaging in set-theoretic analysis, it is useful to examine data with descriptive statistics.
We can use the Vis (2009) data entailed in the SetMethods package (see above). To select a
column within a data frame, we use the $ operator. For example, to get the mean for the
condition p and the median for condition s of the VISF data set, we use the code below. Note
that when you write this code in the script window, RStudio shows the available conditions
that can follow the Dollar sign (see Illustration 2). This convenient feature is helpful to prevent

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 13

misspellings when recalling condition names. But it is also useful because it shows us the
contents entailed in complex objects (we will make use of this feature below):

mean(VISF$p)
[1] 0.354

median(VISF$s)
[1] 0.4

Illustration 2: Dollar Sign in RStudio

We can also visualize the relationship between conditions by plotting one against the other
(XY plot), using the basic plot function of R. All we need to do is specify two conditions in the
data frame, using the syntax introduced earlier. The output will appear in the PLOTS window on
the lower right of RStudio (Illustration 3):

plot(VISF$p, VISF$u)

Illustration 3: XY Plot

To save the plot as a file on our computer, we can select EXPORT at the top of the PLOTS window
and specify the file type, format, and resolution. Another way to save plots is to include such a
function directly in our script. For instance, to save our plot as a PDF file, we run the following
code. The first line calls upon R’s graphics device driver to produce PDF files, specifying the
name of the file we want to create. The second line is identical to the code we used before.
Finally, the command dev.off closes the pdf graphics device, so that the file is created:

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
2

0.
4

0.
6

0.
8

VISF$p

VI
SF

$u

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 14

pdf(file = "XYplot.pdf")
plot(VISF$p, VISF$u)
dev.off()

Like most functions, the PDF graphics device can be customized in myriad ways (e.g., to specify
width, height, and fonts used). How this is done can be seen in the documentation:

help("pdf")

A basic XY plot serves to check the relationship between a condition and the outcome. It can
also be used to plot raw data against calibrated data. While the plot function can be tweaked to
a certain extent, for more refined visualizations and different kinds of plots, I recommend the
ggplot2 package (Wickham 2016).4 Examples are provided in later sections of this R Manual.

Histograms are another helpful descriptive tool. For any condition, a histogram shows the
distribution of values in the data. Histograms are created with the hist function, where we need
to specify the condition we seek to examine. The result is shown in Illustration 4:

hist(VISF$u)

Illustration 4: Histogram

The hist function can be customized. Suppose we want to place several histograms on the same
page, to document them in the appendix to our QCA study. This can be achieved with the par

function to customize graphical parameters in R. The argument mfrow specifies the number of
rows and columns. In this case, we want to place two histograms on one row with two columns
(Illustration 5). The argument lwd specifies line width (thicker containers):

4 The R Graph Gallery contains a large collection of charts done with R: https://www.r-graph-

gallery.com/.

Histogram of VISF$u

VISF$u

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8

0
2

4
6

8

https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 15

par(mfrow = c(1, 2), lwd = 2)
hist(VISF$p)
hist(VISF$s)

Illustration 5: Histograms, Side by Side

Finally, we may want to further customize histograms. For example, the following code
produces white containers (col = "white"), an x-axis from 0 to 1 (xlim = c(0, 1)), an
adapted label for the x-axis (xlab = "Condition U"), same font size for the axis labels and
the axis numbers (font = 2, font.lab = 2), a solid line type (lty = 1), increased line
thickness for the axes [lwd = 2], and an empty title [main = ""]. The result is shown in
Illustration 6. In the same manner, we could also adapt the code to produce several histograms
and plot them on the same page:

hist(
 VISF$u,
 col = "white",
 xlim = c(0, 1),
 xlab = "Condition U",
 font = 2,
 font.lab = 2,
 lty = 1,
 lwd = 2,
 main = ""
)

To reset the graphical parameters to a single column and row, we can use the following:

par(mfrow=c(1, 1))

Histogram of VISF$p

VISF$p

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8

0
2

4
6

8
10

12

Histogram of VISF$s

VISF$s

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8

0
2

4
6

8
10

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 16

Illustration 6: Histogram, Customized

The layout in Illustration 6 works well for QCA purposes. Hence, we could use it as our
standard layout to document the data distribution for all conditions and the outcome (ideally
all histograms should be shown on a single PDF page). Note that in the above script, the x-axis
is limited to scores between 0 and 1. When raw data is displayed, then the limits would need
to be adjusted accordingly, similarly for the y-axis (depending on the frequencies in the data).
For an example from a published QCA study, see the supplemental file to Meissner & Mello
(2022): https://doi.org/10.1080/13523260.2022.2059226

5 Set-Theoretic Analysis

The following sections describe the R functions needed to reproduce the analytical steps
discussed in Mello (2021). The functions require that you have installed and loaded the
packages QCA (Duşa 2019) and SetMethods (Oana & Schneider 2018).

Set Operations

For Boolean operations with crisp and fuzzy sets, we use the pmin and pmax functions of base
R. These reflect the calculation of the minimum (Boolean AND) and the maximum (Boolean
OR). To negate set membership scores, we simply use subtraction (Mello 2021, 49-53).

We first create a data frame Boole with the information from Table 3.3 (Mello 2021, 51):

A <- c(1, 1, 0)
B <- c(0, 1, 0)
C <- c(0.9, 0.7, 0.2)
D <- c(0.3, 0.8, 0.4)

Condition U

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

https://doi.org/10.1080/13523260.2022.2059226

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 17

Boole <- data.frame(A, B, C, D)

For the Boolean AND we use the pmin function across the respective conditions. We place the
results into new conditions of the data frame:

Boole$AandB <- pmin(A, B)
Boole$CandD <- pmin(C, D)

Likewise, for the Boolean OR we use the pmax function across the respective conditions, also
placing the results into new conditions:

Boole$AorB <- pmax(A, B)
Boole$CorD <- pmax(C, D)

Finally, for Boolean negation (NOT), we use subtraction, creating further conditions:

Boole$notA <- 1-A
Boole$notC <- 1-C

This results in a data frame that reflects all the calculation of Table 3.3 (Mello 2021, 51):

Boole
 A B C D AandB CandD AorB CorD notA notC
1 1 0 0.9 0.3 0 0.3 1 0.9 0 0.1
2 1 1 0.7 0.8 1 0.7 1 0.8 0 0.3
3 0 0 0.2 0.4 0 0.2 0 0.4 1 0.8

Venn Diagrams

Set operations on crisp sets can be visualized with Venn diagrams. The venn package (Duşa
2022) allows the drawing of Venn diagrams with up to 7 sets. This package is installed as part
of the QCA package (Duşa 2019), so usually we wouldn’t need to install it separately. In any
event, we install and load the package:

install.packages("venn")
library("venn")

For a simple Venn diagram, we only need to specify the number of sets to be included. The
result is show in Illustration 7:

venn(2)

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 18

Illustration 7: Venn Diagram with Two Conditions

We can also create Venn diagrams where the intersection and the union are highlighted, as
show in Illustration 8 (we place them side by side with the par function introduced above):

par(mfrow = c(1, 2))
venn("A*B", zcol = "red")
venn("A+B", zcol = "green")

Illustration 8: Venn Diagrams (Intersection and Union)

Creating Raw Data

Before we can calibrate sets, we need raw data to work with. To illustrate the procedure, we
create a data frame with random data for our calibration. We use the function runif to draw
from a uniform distribution 30 random numbers between 0 and 60 and place these inside the
vector Raw1. We repeat this for Raw2 and then bind the vectors together in the data frame DT:

Raw1 <- runif(30, min = 0, max = 60)
Raw2 <- runif(30, min = 0, max = 60)
DT <- data.frame(Raw1, Raw2)

A B

A B A B

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 19

For convenience, and also since we do not need precision beyond two decimal scores, we round
up the data frame to two digits:

DT <- round(DT, digits = 2)

Now we can examine the data frame with the head function, which returns the first six lines
(note that you will get different values on your computer because these were randomly created):

head(DT)

Raw1 Raw2
1 11.00 13.56
2 2.48 51.07

3 3.50 3.88
4 48.51 56.38
5 31.80 33.35

6 4.35 36.92

Calibrating Sets

To calibrate a new crisp or fuzzy set, we need a data frame with raw data. This can be
transformed using the calibrate function of the QCA package (Duşa 2019), as shown in the
next example. In brackets, we specify the raw data column of the data frame, the type of target
set (crisp or fuzzy), the method of calibration (direct or indirect), and the empirical
anchors for full non-membership, the cross-over, and full membership in the target set. These
are termed thresholds in the QCA package. Note that the thresholds are always stated in the
same sequence, starting with the value that reflects being fully outside the target set.

For example, we can use the DT data frame we created in the previous section to calibrate the
raw data for condition 1 (Raw1), into a fuzzy-set condition Fuzzy1, using the thresholds 10,
30, and 50 (the latter reflects full set membership). This is the direct method of calibration:

DT$Fuzzy1 <- calibrate(DT$Raw1, type = "fuzzy",
 method = "direct", thresholds = "10, 30, 50")

For presentational purposes, it may be helpful to use the rounding function again after the
fuzzy calibration (see previous), to round to two decimals. This suffices to have a meaningful
differentiation and more fine-grained scores yield no additional benefit for the analysis.

We can also calibrate a crisp set based on the same data and approach. For this, we only need
to specify the cross-over point that distinguishes exclusion from inclusion:

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 20

DT$Crisp1 <- calibrate(DT$Raw1, type = "crisp",
method = "direct", threshold = "30")

Alternatively, we can also use a qualitative approach (of sorts), where we assign fuzzy values to
specific ranges of scores in the raw data. This procedure is more complicated because we need
to proceed stepwise, starting by creating an empty vector. This serves as a “container” to be
filled with values throughout the calibration process:

Qual1 <- NA

Now we start by assigning values to cases that pass the threshold for full inclusion. We refer to
the raw data column we used before and assign a value of 1 to all cases that have a raw data of
50 or higher.

Qual1[DT$Raw1>=50] <- 1 # Full inclusion

In the next steps, we fill the vector sequentially with values for being more in than out, the cross-
over, more out than in, and the threshold for being fully outside the set (full exclusion). The
arrow on the right side indicates which fuzzy values are to be assigned to which range of raw
data values:

Qual1[DT$Raw1<50 & DT$Raw1>30] <- 0.67 # "More in than out"
Qual1[DT$Raw1==30] <- 0.50 # Cross-over
Qual1[DT$Raw1<30 & DT$Raw1>10] <- 0.33 # "More out than in"
Qual1[DT$Raw1<=10] <- 0 # Full exclusion

Finally, we add the new vector to the data frame – creating a column with the same name – and
have a look at the data. Again, your numbers will differ because these were drawn randomly:

DT$Qual1 <- Qual1
head(DT)

 Raw1 Raw2 Fuzzy1 Crisp1 Qual1
1 32.73 24.90 0.60 1 0.67

2 13.69 19.77 0.08 0 0.33
3 15.54 43.81 0.11 0 0.33
4 26.92 45.25 0.39 0 0.33

5 1.80 26.08 0.02 0 0.00
6 43.23 30.55 0.88 1 0.67

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 21

We can now compare the results of the calibration approaches we used to create three sets from
the Raw1 data. Qualitatively, the values for Fuzzy1, Crisp1, and Qual1 are all either above or
below the cross-over of 0.50. But apart from this similarity, there are numerical differences
because the approaches differ in the scales that were used for the calibration (two values for the
crisp set, five values for the qualitative fuzzy set chosen here, and continuous fuzzy values for
the direct method of calibration), as discussed in Chapter 5 (Mello 2021).

Necessary Conditions

There are different ways to assess necessary conditions, but the recommended function for most
purposes is QCAfit from the SetMethods package (Oana & Schneider 2018). It tests whether
a specified number of conditions–in their absence or presence–are individually necessary for the
outcome. We start by reading the FuzzyData.csv file from the online material:

FD <- read.csv("FuzzyData.csv", row.names = 1, sep = ";")

For the QCAfit function we need to specify the columns with our calibrated conditions in square
brackets (here column 1 through 3, separated by a colon), the outcome (FD$OUT), that we want
to test for necessity (we could also test for sufficiency by setting this to FALSE), and that we
want to analyze the outcome (rather than the non-outcome, hence the negative outcome is set
to FALSE):

QCAfit(FD[,1:3], FD$OUT, necessity = TRUE, neg.out = FALSE)

 Cons.Nec Cov.Nec RoN

C1 0.526 0.843 0.932
C2 0.947 0.863 0.851
C3 0.737 0.570 0.543

~C1 0.820 0.616 0.550
~C2 0.398 0.465 0.705
~C3 0.346 0.523 0.804

We can see that Condition C2 passes the 0.90 threshold, so formally speaking it can be
considered a necessary condition (because its coverage and relevance of necessity also pass the
customary thresholds, see Chapter 6). In the next step, we analyze the non-outcome, setting
the respective parameter to TRUE. The result shows that no condition can be considered
necessary for the non-outcome:

QCAfit(FD[,1:3], FD$OUT, necessity = TRUE, neg.out = TRUE)

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 22

Truth Tables

We create truth tables with the truthTable function of the QCA package (Duşa 2019). In the
brackets, we need to specify our data frame (FD), the outcome ("OUT"), whether we want to
have a complete truth table with logical remainder rows (TRUE), whether cases should be shown
(TRUE), and what our consistency cut-off shall be (typically 0.75 or higher), to determine which
rows should be included in the minimization procedure afterwards. Finally, we sort the truth
table by consistency ("incl") and the number of cases per row ("n"):

TT <- truthTable(FD, "OUT", complete = TRUE,
 show.cases = TRUE, incl.cut = 0.75,
 sort.by = "incl, n")

This code assumes that we are working with a data frame that only includes calibrated
conditions and an outcome. But sometimes we may want to specify the conditions to be
included. For an alternative truth table (TT2), we can use the conditions argument and a
vector that lists all the conditions we want to include:

TT2 <- truthTable(FD, "OUT", complete = TRUE,
 show.cases = TRUE, incl.cut = 0.75,
 conditions = c("C1", "C2"),
 sort.by = "incl, n")

Once we have created the truth table, we can examine it by calling upon the object that was
created (TT or TT2). We can also extract the truth table proper to save it in a separate file. For
this purpose, we use an object tt (lowercase) that is inside the larger truth table object that we
created. This is because the TT object contains additional information for the functionality of
the R package. You can always explore the structure of an object with the str function of R.

TT # Display the truth table TT
str(TT) # Display the structure of the TT object
write.csv(TT$tt, "TT.csv") # Save the truth table element in a new file

Minimizing the Truth Table

We derive solution terms from the truth table with the minimize function of the QCA package
(Duşa 2019). This function applies the rules of Boolean minimization to the rows that
consistently lead towards the outcome. These are the rows that pass the consistency threshold
we defined when we created the truth table (incl.cut in the code above).

The minimization can be customized, but it requires that we refer to a truth table object (TT)
and that we specify which types of rows should be included (either "1" for all consistent rows

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 23

or "?" if we also want to include logical remainder rows). We should also set details and
use.tilde to TRUE, which means that measures of fit and other information will be displayed
and that the tilde sign (~) rather than lowercase will be used for the absence of conditions. This
syntax provides us with the conservative solution:

sol.cons <- minimize(TT, include = "1",
 details = TRUE, use.tilde = TRUE)

Let us have a look at this solution by calling upon the object sol.cons:

sol.cons

n OUT = 1/0/C: 12/14/0
 Total : 26

Number of multiple-covered cases: 0

M1: C1*C2*~C3 + ~C1*C2*C3 => OUT

 inclS PRI covS covU cases

1 C1*C2*~C3 0.860 0.727 0.278 0.180 R,L,Z
2 ~C1*C2*C3 0.909 0.839 0.677 0.579 T,A,F,N,C,P,V,W,J

 M1 0.891 0.813 0.857

This solution contains plenty of information. At the top, we see the distribution of cases. The
minimization included 12 cases on rows that consistently led to the outcome (rows on or above
the consistency threshold we specified above), while 14 cases were on rows that did not meet
the threshold. The solution would further list if any case were covered by multiple solution
paths (which is not the case here). M1: C1*C2*~C3 + ~C1*C2*C3 => OUT summarizes the
solution in Boolean notation. Below, we can see details on the two solutions paths, starting with
the configurations that comprise each path, their consistency (inclS), PRI, raw coverage
(covS), unique coverage (covU), and the cases that hold membership above 0.50 in the
respective configuration. Finally, the bottom line provides the measures of fit for the overall
solution term.

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 24

We can also derive the parsimonious solution. Note that we need to work with a complete
truth table for this, meaning a truth table with logical remainder rows. The main difference lies
in the include argument, which now indicates the consideration of logical remainders ("?").

sol.pars <- minimize(TT, include = "?",
 details = TRUE, use.tilde = TRUE)

As expected, the parsimonious solution differs from the conservative solution:

sol.pars

n OUT = 1/0/C: 12/14/0
 Total : 26

Number of multiple-covered cases: 0

M1: C2 => OUT

 inclS PRI covS covU cases

1 C2 0.863 0.783 0.947 - T,A,F,N,C,P,V,W,J; R,L,Z

 M1 0.863 0.783 0.947

We can see that instead of the two paths of the conservative solution, the parsimonious solution
contains the single condition C2, which happens to be a superset of the two conservative
solution paths (the condition is present in both of these). We can also see that consistency and
PRI are lower than for the previous solution, whereas coverage goes up (as will often be the case
in empirical applications).

To examine which logical remainder rows were used as simplifying assumptions (SA) for the
parsimonious solution, we use the following syntax:

sol.pars$SA

The output in the console tells us that logical remainder rows 3 and 8 were used as simplifying
assumptions and thus as counterfactuals for the parsimonious solution:

 C1 C2 C3
3 0 1 0
8 1 1 1

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 25

Finally, we can derive the intermediate solution from our truth table. As discussed in Chapter
7 (Mello 2021), there are two ways to create this type of solution: (1) we can tell the algorithm
to exclude certain logical remainder rows from the minimization (those we deem implausible
on substantive or logical grounds), or (2) we can formulate directional expectations that will
be used by the algorithm in its selection of logical remainders.

The QCA package requires different syntax based on whether you want to exclude a single row
(here the argument omit must be used) or whether you want to exclude several rows (using the
exclude argument). This may change in future versions of the QCA package (Duşa 2019). To
make an informed choice, let us first have a look at the complete truth table:

TT
 C1 C2 C3 OUT n incl PRI cases

4 0 1 1 1 9 0.909 0.839 T,A,F,N,C,P,V,W,J
7 1 1 0 1 3 0.860 0.727 R,L,Z
2 0 0 1 0 7 0.533 0.054 U,I,B,G,H,M,O

1 0 0 0 0 7 0.480 0.133 D,X,Y,S,E,Q,K
3 0 1 0 ? 0 - -
5 1 0 0 ? 0 - -

6 1 0 1 ? 0 - -
8 1 1 1 ? 0 - -

We can see that there are four logical remainder rows (rows 3, 5, 6, and 8). This is hypothetical
data, but we may say that we deem row 3 to be implausible on substantive grounds, and that
we do not want to include it as a counterfactual case (see the discussion of counterfactual analysis
in Mello 2021, Chapter 7).

To exclude a single row, like row 3, we use the omit argument and the number of the logical
remainder in simple brackets:

sol.int1 <- minimize(TT, include = "?",
 details = TRUE, use.tilde = TRUE,
 omit = (3))

This yields the following intermediate solution (abbreviated console output):

 inclS PRI covS covU cases

1 C1 0.843 0.629 0.526 0.180 R,L,Z
2 C2*C3 0.881 0.803 0.722 0.376 T,A,F,N,C,P,V,W,J

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 26

 M1 0.857 0.770 0.902

As the name implies, in terms of its complexity, the intermediate solution is situated between
the conservative and the parsimonious solutions. It also entails two paths, but these contain
fewer conditions than the conservative solution.

We can also exclude several rows, using the exclude argument and a vector with the numbers
of the rows that shall be excluded (here rows 5 and 8):

sol.int2 <- minimize(TT, include = "?",
 details = TRUE, use.tilde = TRUE,
 exclude = c(5, 8))

Moreover, we can formulate directional expectations (dir.exp) to derive an intermediate
solution. For example, we may expect that C1 and the absence of C2 lead to the outcome:

sol.int3 <- minimize(TT, include = "?",
 details = TRUE, use.tilde = TRUE,
 dir.exp = "C1, ~C2")

Finally, we can formulate conjunctural directional expectations, as for the combination of C1
and C3, in addition to C2:

sol.int4 <- minimize(TTdt, include = "?", details = TRUE,
use.tilde = TRUE,
dir.exp = "C1*C3, C2")

As we can see, there are many different ways to derive solution terms. Beyond the standard
analysis, there are also what Schneider & Wagemann (2013) introduced as enhanced standard

analysis and theory-guided enhanced standard analysis, which differ in the treatment of logical
remainders (see the discussion in Mello 2021, Chapter 7). What is essential is that logical
remainder rows are treated in a conscious manner. To do this, we should always check the
simplifying assumptions that were used to derive a solution. As mentioned above, for the
parsimonious solution and intermediate solutions based on the exlusion of logical remainders,
this is done by calling upon the SA element, which is already entailed in the solution object
produced by the QCA package (Duşa 2019). For example, for the first intermediate solution
the simplifying assumptions are as such:

sol.int1$SA

$M1

 C1 C2 C3

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 27

5 1 0 0
6 1 0 1

8 1 1 1

This shows us that while our first intermediate solution omitted logical remainder row 3, it
used logical remainder rows 5, 6, and 8 for the calculation of the solution term. If we deem
some of these questionable (based on the reasoning discussed in Chapter 7), then we could
adapt the settings, so that the specific rows are excluded from the minimization procedure,
using some of the procedures introduced above.

When using directional expectations for the intermediate solution, the simplifying
assumptions need to be checked in a different manner (due to how the QCA package works).
Any intermediate solution that used the dir.exp argument creates an i.sol component,
which in turns entails the combination of the conservative and parsimonious solutions (C1P1)
and subcomponents with easy counterfactuals (EC), difficult counterfactuals (DC), and non-
simplifying easy counterfactuals (NSEC). To find out which logical remainders have been used
as simplifying assumptions for an intermediate solution with directional expectations, the EC
component needs to be examined. For example, for intermediate solution #3 from above:

sol.int3$i.sol$C1P1$EC

We can see that logical remainder row 8 was treated as an easy counterfactual and used as a
simplifying assumption for this intermediate solution:

 C1 C2 C3

8 1 1 1

6 Visualizing Results

When applying fuzzy-set QCA, it is recommended to construct an XY plot that displays set-
membership in the solution term against set-membership in the outcome. As described above,
this can be done with the basic plot function of R. Moreover, the SetMethods package (Oana
& Schneider 2018) includes the function xy.plot, which produces plots with integrated
measures of fit. While this is convenient, the resulting plots include axes lines that go beyond 0
and 1, have a rectangular shape, and are prone to overplotting labels. Hence, I recommend
building a plot from the ground up and to customize it, so that it fits your research purposes.
The best option is to work with the ggplot2 package (Wickham 2016). The downside of
working directly with ggplot2 is that customization can require quite a bit of script and it may
take a while until you have a plot you’re satisfied with. The upshot is that once you have created
your script, you can adapt it for other projects, which will take considerably less time. The

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 28

following section provides you with a script to use and adapt for your own purposes. That said,
before engaging with ggplot2, it’s a good idea to first have a look at the documentation of the
package: https://ggplot2.tidyverse.org/

Then, if we haven’t yet done so, we start by installing the package:

install.packages("ggplot2")
library("ggplot2")

Now we read the sample data entailed in the file plot-data.csv (on the website, see the
download instructions above):

plot.data <- read.csv("plot-data.csv", row.names = 1)

When creating a plot with ggplot2, we first specify a target object (our.plot), followed by the
ggplot function and information about the data source (plot.data) and the aesthetics (aes)
to be plotted as x and y (in our case the columns SOL and OUT from plot.data). Next, we
indicate that the geom_point function should be used (to create a scatterplot, also known as XY
plot). We also specify color fill for our points (here dodgerblue, but we could use any other
color), the size of the points, their shape, the color of the surrounding lines (black), and
their line stroke (thickness). This concludes the first six lines of script:

our.plot <- ggplot(plot.data, aes(x = SOL, y = OUT)) +
 geom_point(fill = "dodgerblue",
 size = 7,
 shape = 21,
 color = "black",
 stroke = 1) +

(continued below)

The next part of the script specifies the layout of the non-data components of our plot. We
use theme_classic for a minimal layout without gridlines or background. The next four lines
specify the border box around the plot (panel.border), indicating color, thickness, and type
of line. This is followed by scale_x_continuous and scale_y_continuous, which attach
names to the x-axis and the y-axis, and also indicate that these should run from 0 to 1 with tick
marks at each 0.1 break. Coord_cartesian defines the coordinate system. By setting the limits
slightly outside 0 and 1, respectively, we enlarge the plot so that cases in the corners become
better visible. Finally, we add a diagonal line to the plot (geom_abline), so that it is easier to
identify set-relations:

(continued from above)

https://ggplot2.tidyverse.org/

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 29

 theme_classic() +
 theme(panel.border = element_rect
 (fill = NA,
 color = "black",
 linewidth = 1,
 linetype = 1)) +
 scale_x_continuous(name = "Solution Term",
 breaks = seq(0.0, 1.0, 0.1)) +
 scale_y_continuous(name = "Outcome",
 breaks = seq(0.0, 1.0, 0.1)) +
 coord_cartesian(xlim = c(-0.02, 1.02),
 ylim = c(-0.02, 1.02)) +
 geom_abline(intercept = c(0, 0),
 slope = 1)
our.plot

This script yields a basic XY plot with ggplot2, the result of which is shown in Illustration 9
found below. We can further use the function ggsave to save the plot as a PDF file
(xyplot.pdf) with specified measurements (width, height) and resolution (dpi):

ggsave("xyplot.pdf",
 plot = our.plot,
 path = NULL,
 scale = 1,
 width = 7,
 height = 7,
 dpi = 300)

The XY plot of Illustration 9 is fine, yet it can still be improved. The text elements should be
larger, and we could add horizontal and vertical lines to indicate qualitative differences. We
may also want to label unaccounted cases and deviant cases. Moreover, we could include a
shaded triangle in the upper right corner for observations that are typical cases (see Mello 2021:
194). This can be done with the following script, which is described below (and entailed in
RManualforQCA.R).

Illustration 9: Basic XY Plot with ggplot2

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 30

The following is the script for an enhanced XY Plot, which could also serve as a template to
be customized as needed (this is entailed in the RManualforQCA.R file). In the first steps,
subsets are created for unaccounted and deviant cases, and a polygon shape is constructed for
the shaded triangle that is used in the XYplot:

Create subsets with unaccounted and deviant cases
(In a similar way, you could also create a subset for typical cases)

Unacc <- subset(plot.data,
 OUT > 0.5 & SOL < 0.5) # Subset of unaccounted cases
Devia <- subset(plot.data,
 OUT < 0.5 & SOL > 0.5) # Subset of deviant cases

Create triangular (polygon) shape for upper right triangle
poly <- data.frame(x = c(0.5, 0.5, 1.1),
 y = c(0.5, 1.1, 1.1))

(continued on next page)
(continued from previous page)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Solution Term

O
ut

co
m

e

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 31

Plot
our.plot2 <- ggplot(plot.data, aes(x = SOL, y = OUT)) +
 geom_polygon(inherit.aes = FALSE, aes(x = x, y = y), # Uses triangle
 data = poly,
 fill = "gray95") +
 geom_point(fill = "dodgerblue", # Aesthetics for the cases
 size = 7,
 shape = 21,
 color = "black",
 stroke = 1) +
 theme_classic() +
 theme(panel.border = element_rect(fill = NA,
 color = "black",
 size = 1,
 linetype = 1)) +
 theme(axis.text.y = element_text(size = 18,
 color = "black"),
 axis.title = element_text(face = "plain",
 size = 20)) +
 theme(axis.text.x = element_text(size = 18,
 color = "black"),
 axis.title = element_text(face = "plain",
 size = 20)) +
 scale_x_continuous(name = "Solution Term",
 breaks = seq(0.0, 1.0, 0.1)) +
 scale_y_continuous(name = "Outcome",
 breaks = seq(0.0, 1.0, 0.1)) +
 coord_cartesian(xlim = c(-0.02, 1.02),
 ylim = c(-0.02, 1.02)) +
 geom_hline(aes(yintercept = 0.5), # Horizontal line
 color = "black", linetype = 5) +
 geom_vline(aes(xintercept = 0.5), # Vertical line
 color = "black", linetype = 5) +
 geom_abline(intercept = c(0, 0), # Diagonal line
 slope = 1) +

(continued on next page)
(continued from previous page)

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 32

 geom_text_repel(data = Unacc, # Label unaccounted cases
 aes(label = row.names(Unacc)),
 box.padding = 0.5,
 size = 5) +
 geom_text_repel(data = Devia, # Label deviant cases
 aes(label = row.names(Devia)),
 box.padding = 0.5,
 size = 5)
our.plot2

ggsave("xyplot2.pdf", # Save the plot as PDF file
 plot = our.plot2,
 path = NULL,
 scale = 1, width = 7,
 height = 7, dpi = 300)

This produces the XY plot shown in Illustration 10 on the next page. In case we wanted to
visualize the constituent paths of a QCA solution, we could also combine several plots on the
same page layout, using the par function introduced above (for example, if we had three “paths”
or “recipes”, showing the overall solution in one XY plot and the constituent paths in three
further XY plots). The argument geom_text_repel serves to avoid overplotting labels. But this
can also be customized, for instance if you prefer to not have lines indicating the positions of
the cases. This is just one example of how QCA results can be visualized and how the ggplot2
package (Wickham 2016) can be utilized for that purpose. I also recommend having a look at
visualization options explored by Rubinson (2019) and Oana, Schneider & Thomann (2021),
among others.

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 33

Illustration 10: Enhanced XY Plot with ggplot2

7 References

Duşa, A. 2019. QCA with R. A Comprehensive Resource. Cham: Springer.
Duşa, A. 2022. Venn: Draw Venn Diagrams. R Package Version 1.11.
Elff, M. 2021. Data Management in R. London: Sage.
Field, A., Miles, J., & Field, Z. 2012. Discovering Statistics Using R. Los Angeles: Sage.
Gaubatz, K. T. 2015. A Survivor’s Guide to R: An Introduction for the Uninitiated and the

Unnerved. Los Angeles, CA: Sage.
Imai, K. 2017. Quantitative Social Science: An Introduction. Princeton, NJ: Princeton

University Press.
Kabacoff, R. I. 2015. R In Action: Data Analysis and Graphics with R. Shelter Island: Manning.
Meissner, K. L., & Mello, P. A. 2022. The Unintended Consequences of UN Sanctions: A

Qualitative Comparative Analysis. Contemporary Security Policy 43 (2): 243-73.
Mello, P. A. 2021. Qualitative Comparative Analysis: An Introduction to Research Design and

Application. Washington, DC: Georgetown University Press.

21
23

25
33

912

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Solution Term

O
ut

co
m

e

Mello, Patrick A. (2021) Qualitative Comparative Analysis: An Introduction to Research Design and
Application, Washington, DC: Georgetown University Press, R Manual for QCA (online appendix).

R Manual for QCA | 34

Oana, I.-E., & Schneider, C. Q. 2018. SetMethods: An Add-on R Package for Advanced
QCA. The R Journal 10 (1): 507-33.

Oana, I.-E., Schneider, C. Q., & Thomann, E. 2021. Qualitative Comparative Analysis Using
R: A Beginner’s Guide. New York: Cambridge University Press.

Pollock, P. H., & Edwards, B. C. 2018. An R Companion to Political Analysis. Thousand
Oaks: Sage.

R Core Team (2020) R: A Language and Environment for Statistical Computing, Vienna, R
Foundation for Statistical Computing.

RStudio (2020) RStudio: Integrated Development Environment for R, Boston.
Rubinson, C. 2019. Presenting Qualitative Comparative Analysis: Notation, Tabular Layout,

and Visualization. Methodological Innovations 12 (2): 1-22.
Schneider, C. Q., & Wagemann, C. 2013. Doing Justice to Logical Remainders in QCA:

Moving Beyond the Standard Analysis. Political Research Quarterly 66 (1): 211-20.
Vis, B. 2009. Governments and Unpopular Social Policy Reform: Biting the Bullet or Steering

Clear? European Journal of Political Research 48 31–57.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

